]

Control
Technology

Corporation
|

CONTROL TECHNOLOGY CORPORATION
5100/5200 C User Programming Guide

5100/5200

‘C’ User Programming
Guide

5100/5200 ‘C’ User Programming Guide

Blank

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

A WARNING: Use of CTC Controllers and software is to be done only by
experienced and qualified personnel who are responsible for the application and use
of control equipment like the CTC controllers. These individuals must satisfy
themselves that all necessary steps have been taken to assure that each application
and use meets all performance and safety requirements, including any applicable
laws, regulations, codes and/or standards. The information in this document is given
as a general guide and all examples are for illustrative purposes only and are not
intended for use in the actual application of CTC product. CTC products are not
designed, sold, or marketed for use in any particular application or installation; this
responsibility resides solely with the user. CTC does not assume any responsibility or
liability, intellectual or otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software
described in this document is provided under license agreement and may be used and
copied only in accordance with the terms of the license agreement. The information,
drawings, and illustrations contained herein are the property of Control Technology
Corporation. No part of this manual may be reproduced or distributed by any means,
electronic or mechanical, for any purpose other than the purchaser’s personal use, without
the express written consent of Control Technology Corporation.

The information in this document is current as of the following Hardware and Firmware

revision levels. Some features may not be supported in earlier revisions. See 'www.ctcr
control.com for the availability of firmware updates or contact CTC Technical Support.

Model Number Hardware Revision | Firmware Revision
5100 >C >=4.05.46
5200 All Revisions >5.00.26

http://www.ctc-

TABLE OF CONTENTS

gL oo (B Tox 1 o o RSO 5
(@0 101 o 1 = OSSO 5
DR T LU 10 o I O 1 =SSP 6
FFEAIUIES ...ttt n e R ne e e nnn e 7

RESOUICE OIS, ettt b et s ae e b e neenneens 7
LIS TSRS S PPN 7
(@00]0010 010 0T o= 1 o 0 1S3 ST 7
MOLTON CONEIOL ...ttt bbbttt e e nrenas 7
Program CONLIOLoieeiiiie ettt b e e s reesreeneesneens 7
0= 1S T o o USSR 7

100 USRS 9
Cygwin v1.3.22 Installation (COMPIEN)cceeiieeeeieie e 9
GNU X-ToolsV3.0b for Windows Installation.............ccceeereenininnenneneeneenie e 13

Verify Compiler INStallationcccveoeieeiece e 16
Final System ConfigUIalionooeeiieieieeie et s nre s 18

Loadable ‘C’ User FUNCLiONS aNd FIITErS........ccoiiiiriiinineeeeee e 20
SYSLEM MEMOIY M8 ...ttt s e e e s e e sne e e neesnneenneas 20
ReSOUrce Filter EXAMPIE........coiiieeieee sttt neenesneenne s 22
Virtual Table, User and QUICKSLED.........cceiieiiiiieiiee ettt 23
VTABLE_QS Function Prototypes and Definitions...........c.coceverinenenienenesese e 26

REGISIEr ACCESS....c.ueeiiieteeie ettt e sttt e s et e e e s teeteeseesseetesreesreereeneenneeneas 26
(@00]101010 18 01T o= 11 [0 1300 27
[Tz o 101 o S 30
1Y/ Ko 0] g @0 11 | 30
RESOUICE FIITEIS.eiiiiiiiicteetie ettt sttt st sbe e 30
SYSEEM FUNCLIONS ...t bbb e 32
B 1= L1 o USSR 33
UDP NEWOIKING....c.eeteieeieriieeeee ettt snenre s 38

UDPTERM/IOGEVENt ULHITIES ..ottt 42

INVOKING UDPTEMN.....cuiiiiiiieite sttt sttt 42

USErAPP.C SAMPIE PrOgraM.......ccueeieeeie ettt sttt e e 48

CHAPTER

Introduction

An advanced programming capability is supported by the 5100 and 5200

operating systems which allows independently compiled 'C' programs to

be loaded into memory for execution alongside Quickstep programs.

CTC recommends that only the most advanced programmers should

consider the use of the features described in this document. This

restriction is necessary due to the fact that extensive control is given to
the 'C' (simple C++ is also supported) user functions and improper use can result in an
unsafe controller.

8 MB of dynamic memory resides in the 5200 controller (2 Meg in the 5100 controller)
where user programs can be loaded and executed. Currently programs reside on the flash
diskinthe/ _syst em Progr ans directory. Multiple programs may be resident, each
loaded/unloaded by Quickstep and script control running the ‘run user program
<fil| enanme> script command.

'C' and ‘C++” programs have access to virtualy all the resources of the 5100/5200 and
more can be added as is needed. Currently access to serial communications, UDP
packets, TCP virtua seria ports, motion control, analog, digital, register, step logic, etc.
is available. User functions can be caled upon initialization, periodic tics, as an
independent Quickstep step, and even as a totally separate thread. An independent
memory and heap area is used, including the 'C' library that is linked. Virtual function
calls are used to expose the Quickstep environment.

Additional functionality will be added to the ‘C’ programming environment, upon review
of customer requests. CTC believes the growth of this aspect of the product is best
initiated by the user community. If you believe that you need features not described
within this document, contact your CTC regional sales representative.

Compiler

The compiler is available from MicroCross’s website and is based on GNU, at

http://www.microcross.com/htmi/visual _x-tooishtml. Only the gcc compiler V3.2 is
supported by to the 5100/5200, for the Hitatchi SH2. . Various manuals documenting

http://www.microcross.com/html/visual_x-tools.html

the compiler are available from MicroCross and RedHat at
http://www.redhat.com/docs/manuals/gnupra. Since the compiler is an open source
product MicroCrossis providing support for the tools for their fee. If you do not wish to
have tools support, the compiler is available free of charge from Control Technology’s
web site, ihitp://www.ctc-control.com/customer/idxdownloads.asp as a zip file. The zip
file is quit large, around 700 Meg, but does contain all necessary files, including the

development source code.

E_—“ No compiler support is provided by CTC, only MicroCross on afee basis.

Full floating point capability is supported by the 5100/5200 although the printf, sprintf,
and vsprinf functions that reside within the GNU libraries are not used, and have been
dlightly modified. A full build environment, with makefile, is also available for 'C' User
function development. They are supplied as a .zip file, 5X00User C. zi p, for
instalation in the 5X00Us er Cdirectory.

Distributed 'C' Files:

The CTC 'C' Programming zip file contains a number of files. The ‘C’ sourcefilesare
located in the 5X00User C/ Sour ce subdirectory, header filesin
5X00User C/ Header s. Filesof interest are:

Cor eFunc. ¢ — CTC provided file, not to be modified, which provides a clean interface
to the controller OS exposed virtual function table. A table of pointers to core OS
functionsis maintained and isolated by this module.

User Start.c — CTC provided file, not to be modified, which contains printf/sprintf
substitute, memory allocation routines and some other general functions.

User App. ¢ — User program and sample code, contains 'C' main function entry point
and isthe file that the user will modify.

uTabl e. h — Main include file and definition file for virtual function calls and
user/Quickstep interface structures.

ExecEnv. cf g — Configuration file to set the proper environment variables and drive
location of the installed GNU compiler environment.

ExecEnv. exe - Executable file used to launch any of the GNU tools, including
‘make’.

al oad.srl1 - Output file of sample build. When placed in the controller
/ _system Prograns subdirectory, it may be loaded and executed using the r un
user pr ogr amscript command.

makef i | e — Rulesfilefor building user ‘C’ application programs.

bui | d5100. bat — Example build file on how to modify the file environment to build
an srl file for the 5100.

bui | d5200. bat — Example build file on how to modify the file environment to build
an srl file for the 5200.

http://www.redhat.com/docs/manuals/gnupro
http://www.ctc-control.com/customer/idxdownloads.asp

Features

'C' user programs are available to provide advanced functionality. They may beused in a
number of scenarios to enhance the Quickstep language and/or work independently.
Some examples are:

Resource Filters

A resource filter isa'C' function that will be called whenever aread or write is made to a
resource. The actua value is presented to the 'C' function and it may simply return the
same value or modify it as desired. Resource filters can be installed for any Data
Register, Data Table access, Analog Input/Output values, and/or Motion values. Filters
can provide universal conversions such as scaling, complicated floating point math
calculations, maintaining your own 'C' tables and arrays, or virtualy any other
manipulation that is required while intercepting a Quickstep or Network read or write
operation to aresource.

Tasks

'C' functions can be called just like Quickstep steps, accessing the same resources,
mani pulating data, custom communications protocols, string manipulation, etc. Accessto
the standard Quickstep task round robin loop is available. User functions can be called
once per task loop, or as super tasks, after each Quickstep step.

Communications

User functions have complete access to both the standard seria port raw data and TCP
virtual serial ports (see Lantronix COBOX terminal server), and UDP raw socket packet
interface. This allows for easy manipulation of string data for placement in registers and
the addition of custom communication protocols.

Motion Control

User functions have complete access to the same function calls made by Quickstep to add
complicated motion control algorithms. Filters can be added to Motion registers to ease
the calculation of arc, build tables on the fly, etc.

Program Control

Just as multiple Quickstep programs can reside and be dynamically loaded from the flash
disk, User Programs can also be changed dynamically.

Expansion

As new features are needed, the 'C' User Function interface will be expanded with
additional capabilities added, based on real world input. Library functions are expected
to be made available for standard conversions, filter examples, motion control, and
advanced communications.

5100/5200 ‘C’ User Programming Guide

Blank

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ¢C’ User Programming Guide

CHAPTER

Tools

The compiler tools are based on open source, industry standard GNU
gcc, freely distributable and extremely stable. This provides a very cost
effective development environment while benefiting from a large
community of developers.

Cygwin v1.3.22 Installation (compiler)

Insert Microcross CD labeled “CY GWIN” (v1.3.22) or extract the downloaded zip file to
adirectory of that name. The welcome message will appear if autorun starts properly,
otherwise double-click the setup application and the following Welcome screen will

appear:

i Cygwin (1.3.22) for Microcross GNU X-Tools v3.0 - InstallShield Wizard fz|

Welcome to the InstallShield Wizard for
Cygwin {1.3.22) for Microcross GNU X-Tools
v3.0

The InstallShield{R) Wizard will install Cyguin (1.3.22) For
Microcross GMU ¥-Tools +3.0 on your computer, To conkinue,
click Mext.

W ARMING: This program is protected by copyright law and
international treaties.

Mext = % [Cancel

Control Technology Corporation 9
Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ¢C’ User Programming Guide

Click <Next> and the license agreement will appear.
i Cyowin (1.3.22) for Microcross GHU X-Tools v3.0 - InstallShield Wizard E'

License Agreement

Please read the Following license agreement carefully, ‘ |

[(C) 2000-2003 Microcross, Inc.

GHUT GENERAL FUEBELIC LICENSE

Version 2, June 1991
Copyright (C) 1939, 1991 Free Zoftware Foundation, Inco.
59 Temple Place - Suite 330, Boston, Mi 02111-1307, T34

%Eﬂ:cept the kerms in the license agreement

do not accept the kerms in the license agreement

[< Back H Mexk =] [Cancel]

Click <I Accept> followed by <Next>. A screen requesting user information will appear.
o Cyowin {1.3.22) for Microcross GHU X-Tools 3.0/ - InstallShield Wizard [Z|

Customer Information \ ‘
Please enter your infarmation,

User Marme:

Qrganization:

Install this application For:

%) Anvone who uses this computer (all users)

3 0nly For me (Ken Kollet)

< Back ” Mextk =] [Cancel

Control Technology Corporation 10
Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ¢C’ User Programming Guide

The default installation folder will appear, click <Change> if anything other than
C:\Cygwin is desired, then click <Next> to proceed.

I Cyowin (1.3.22) for, Microcross GHU X-Tools v3.0 - InstallShield Wizard rg|

Destination Folder ‘
Click Mesxt boinstall ko this Falder, or click Change toinstall ko a different Folder, |

G Install Cywgwin {1.3.22) for Microcross GRU %-Tools »3.0 to:

cicygun

[< Back. H Mexk =] [Cancel]

A summary of the current settings will appear, click <Back> to make changes or
<Install> to begin:

Control Technology Corporation 11
Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ¢C’ User Programming Guide

e Cyowin (1.3.22) for Microcross GNU X -Tools v3.0 - InstallShield Wizard |

Ready to Install the Program

The wizard is ready to beqgin installation,

If wou wank ko review of change any of your installation settings, click Back., Click Cancel ko
exit the wizard,

Current Settings:

Setup Type:

Destination Folder:
CCyguind
Iser Infarmation:

Mame: Ken Kaollet

Company; Contral Technology Corporation

[< Back. ” Install %][Cancel]

Installation will begin and a progress bar and ‘ Status’ message will appear:

i Cygwin (1.3.22), for Microcross GNU X-Tools ¥3.0 - InstaliShie... [= |[51([X]

“

Installing Cygwin {(1.3.22) for Microcross GNU X-Tools ¥3.0

The program feaktures you selected are being installed.

Please wait while the Installshield Wizard installs Cygwin (1.3.22) for
Microcross GHU ¥-Tools 3.0, This may take several minutes,

Skakus:

Copying new files

LI)

Once the installation is finished the below dialog will appear, click <Finish>:

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

12

5100/5200 ¢C’ User Programming Guide

i Cyowin (1.3.22) for Mii*ucruss GNU X-Tools ¥3.0 - InstallShield Wizard E'

InstallShield Wizard Completed

The Installshield Wizard has successfully installed Cygwin
(1.3.22) For Microcross GRU %-Tools +3.0. Click Finish to exit
the wizard,

The generic ‘C’ compiler is now installed. In next section the CD containing the
specific tools and libraries for the Hitachi SH2 environment will be installed.

GNU X-Tools V3.0b for Windows Installation

Cygwin v1.3.22 must beinstalled prior to proceeding.

Start the GNU X-Tools Shell using the desktop icon that was installed with Cygwin.

GHU E-Thals

Shell

Y ou should get the Microcross banner upon startup of the command shell. This shell is
for inputting UNIX style commands.

Control Technology Corporation 13
Document 951-520004-0002 10/04 (Preliminary)

Microcross, Inc.

Free Software Foundation
Cugnus Support

Hostz of Contributors

wtools {target—alias' to set up for a cross target.
Ci.e.,. xtools arm—elfl

*wtools help’ to get help on xtools commands.

‘help’ to get Bash Shell help.

Ctrl-d’ to exit.

Insert the GNU X-Tools CD into your CD drive or unzip the appropriate fileto a
temporary directory. Type the following commands to install your tool-suite of choice:

$nmount (Enter)

C:~Cyguwin~bin on Ausr-bin type system C(hinmode?
C:sCyguwin~1lib on Ausr~libh type system Chinmode>
C \ﬂygu1n on # tupe system (hinmode?l

on Sougdrivesc type user C(hinmode.noumount?
on Scugdrivesm type wser Chinmode.noumount?
on Scugdrivesq type user (hinmude,nuumuunt)
on Scugdriverss type wuser Chinmode.noumount?
on Scugdrivesz type user C(hinmode.noumount?

Soumoessw_dev2sCygwin 1.3 on smntscdrom type system Chinmode X

m
q
5

If the mount of the ‘/mnt/cdrom’ is mapped to your CDROM drive letter with GNU X-
Tools, then skip over to Installation of GNU X-Tools; otherwise, perform the following
steps to mount your CDROM to the proper drive letter. From then on the mount will stay
permanent unless changed:

$ umount -s /mt/cdrom (Enter)
$ nmount -s -b -f <CD-drive-letter> /mmt/cdrom (Enter)
e.g., munt -s -b =f d: /mt/cdrom (Enter) (assuming d: drive)

If you are referencing an area on a hard disk that the xtools were unzipped to then mount
the cdrom pointing to the mapped disk drive, which is pointing to that directory.

Example: Unzipped files are in the “Xtools’ subdirectory on the C: drive. Therefore
using Windows tools create a mapped drive, for instance K: pointing to this subdirectory:

== | ocal Disk [C:)

File Edit \Wiew Fawarites

OBack v &4 ir

: Address |we O

Disconnect Metwark D

Synchronize, ..

Falder Options. ..

Map Network Drive E

Windows can help you connect to a shared netwark Folder
and assign a drive letter to the connection so that vou can
access the Folder using My Compuker.

Specify the drive letker for the connection and the Falder
that you want to connect bo;

Dirive: ki W

Example: \1serverishare
Reconnect at logon

Connect using a different user name,

Sign up For online storage or conneck ko a
nebwork server,

I Firish %J [Zancel]

Now mount the mapped drive:
$ nmount -s -b -f K /mmt/cdrom (Enter) (assuming K drive)

Smount —s —h —f K: /mnt/cdrom

Smount

sCyguwinshin on ~usr~-bin type system Chinmode
sCygwinslib on Ausrs1lib type sysztem Chinmode
sCyguwin on ~ type system (hinmode?

on smntscdrom type system C(hinmode»

[xIxI3]

on scygdrivesc type user Chinmode.noumount?
on Scygdrivesm type uvszer Chinmode.noumount >
on scygdrivesqg type user Chinmode.noumount?
on Socygdrivess type uvszer Chinmode.noumount >
on Sscygdrivesz type user Chinmode.noumount?

R S =2 Iy]

Typing the mount command, as above now shows the /mnt/cdrom has been created and is
mapped to the K: drive.

Now we are ready to install the X-Tools and Visual GDB for the SH2 processor. First
install the X-Tools and SH2 specific libraries:

$ xtools install sh-elf (Enter)

GHU X-Tools Shell

Sxtools install sh—-elf

Installing toolchainsproduct sh—elf from smnt-scdromsbin to ~
usrs/hinssh—elf-addrZ2line . .exe

usrs/hinssh—elf-ar.exe

usrs/hinssh—elf—-as.exe

usrs/hinAssh—elf—c++_exe

usrshinssh—elf gasp.exe
usrs/hinssh—elf—goc.exe
usrshinssh—elf —gocchug
usr/hinssh—elf—geoj.exe
usr~binssh—elf—gcjh.exe
usrshinssh—elf—gcov.exe
usr~binssh—elf—gdh.exe

usr hinssh—elf—gdbtk.exe
uzr-binssh—elf—jcf—dump.exe
usrs/hinssh—elf—ju—scan.exe
usr-binssh—elf-1d.exe
uzr-binssh—elfnm.exe
uzr-binssh—elf—obhjcopy.exe
uzrshinssh—elf —ohjdump.exe

Now install the Visual GDB debugger (not currently supported):

$ xtools install sh-elf-gdbtk (Enter)

xtools install sh—elf—gdbtk
Installing toolchainsproduct sh—elf-—gdbtk from mntscdromsbhin to ~

Esr/hin/sh—elf—gdhtk.exe

Verify Compiler Installation

Onceinstalled, you can easily verify the proper operation of your toolsuite by running a
test suite in the Cygwin directory. Follow these steps using the GNU X-Tools Shell:

$ xtools sh-elf (Enter)

wtools sh—elf
Setting up Shell for zh—elf

zh—elf Bash Shell Ready...
sh—elf$

sh-elf$ cd /hone/test (Enter)

sh-elf$./run-all (Enter) (dot forward slash run-all)

GHU X-Tools Shell

PASS: ztruct

Compiling taylor.c

Running taylor.c

taylor: checking convergence of tavlor s=ine series

taylor converged after 12 iterations

Compiling trigtst.c

Running trigtst.c

Trigtst: Computing trig,. inverse functions for 360 vectors
on a unit circle

Trigtst: Completed

Compiling varargs.c

Running varargs.c

varargz: Testing pre—ANSI variadic function arguments
Calling a function with awgs "' 'M2"_"3"
The function will print the args as received

argument 1. value is 1

argument 2, value is 2

argument 3. value is 3

I varargs

Upon completion select <Exit> and reboot your PC.

Final System Configuration

Inthe 5X00User Cdirectory supplied by CTC, there exists afile called ExecEnv. cf g.
If you did not use the ‘C’ drive as your installation drive, the first line of this file must be
changed to match your drive:

CYGWIN=C:\CYGWIN ->changethe“C:” to your drive |etter.
Also create at np subdirectory on the installation drive.

To ensure a proper installation you should build the test program. Change your current
directory to where you put the 5X00 User C software and type execenv nake. The
execenv file creates a temporary environment using the ExecEnv. cf g definitions
and runs the makefile using the ‘make’ utility. Output should appear similar to below:

G: \51@3U;e:ﬂ>execenu make

Succe CYGUIN=C:~CY¥GWIN

Succ i PATH=xCYGUIN:~\BIMN;«CYGWIN»~contrib~bin;»CYGWIN:~USR~BIN;xPATH:

Succ i GCC_EXEC_PREFIX=r-usr-1lib/gcc—1ib

Succe i LIBRARY_PATH=-uszv-1lib-gcc—libszsh—elf .~

Succe i C_INCLUDE_PATH=. Headers:.. libs/Headers: usr sh—elf. include

Success i CPLUS_INCLUDE_PATH=.-Headers:__-libs-Headers: uzspr gsh—elf - include- g++
Success setting TMPDIR=xTEMFP:

C-~51@8UzerCrsh—elf-gcc —m2 —g —0 —Wall ¢ -I.-Headewrz -I. -I..-1libs —-DBIG —DMODELS18

ch—-elf—gce —m2 —g -0 —Wall ¢ —-I.-Headers —-I. -1I..-1ibhs —-DBIG -DMODELS188 —c ./Soup
flzh-elfgcc —m2 —g -0 —Wall ¢ —I.rsHeaders -1I. —I1..-1libhs —DBIG -DMODEL51688 —c ./Soup
ch—elf—1d —o aload.abs Userftart.o CoreFunc.o userfipp.o -Taload.x —Map aload.map -L-Aus
goce —lstde++ —1m

ch—elf—obhjcopy —R .comment -5 —0 srec aload.abs aload.zp

.sspecmen aload.sr aload.spl
Done
rm aload.sp

C:~5100UserC>

A file called al oad. sr 1 should now appear. This file is the loadable module to be
executed by the controller. Its file size should be about 99,024 bytes. This sample
program simply takes any value written to registers 2 through 6 and divides it by 2. It
also contains an example on how to use the serial and UDP network ports. Its source
code is contained within UserApp.c.

Setting up the 'C' programming environment for your particular editor or specially
configuring directory structures is beyond the scope of this document. Refer to the
documentation supplied by Microcross when necessary. Typically source files are placed
in the Source subdirectory and header files in the Header subdirectory. If a new source
file is added make sure to also edit the makefile and add where needed, using an existing
file as an example.

5100/5200 ‘C’ User Programming Guide

Blank

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

19

CHAPTER

L oadable C User Functions and Filters

‘C’ User Functions are compiled and linked into a single .sr1 file. This
fileis placed in the /_system/Programs directory, on the flash disk. It is
loaded using the “run userprogram filename.sr1” script command, into
SDRAM memory (reference map). The ‘run’ script command can either
be executed at the command line, via Telnet, or embedded in a script file
and executed by writing the script number to register 12311. Reference
the Script Language Guide; #951-520003 (951-510003, 5100), for additional information.

5200 System Memory Map

FLASH
Location Address Range Max Bytes Bus

Main Board — Boot, 0x00000000 to Ox007FFFFF 8M

CEET RSN 0x00000000 to OX001FFFFF (min base unit), (first IM 16
0x00100000 to 0x001FFFFF (min user space) reserved*)
(up to 640 series flash) *subject to change

Main Board — 0x02000000 to Ox02FFFFFF

Expansion memory 16M 32

(up to 640 seriesflash)

Top Memory Expansion 0x01000000 to Ox017FFFFF
Board 8M 16
(up to 640 series flash)

Top Memory Expansion 0x03000000 to 0x037FFFFF

Board 8M 32
(up to 320 series flash)

Bottom Memory 0x01800000 to Ox017FFFFF

. M 16
SfpETElen BesTe (up to 640 series flash)

Bottom Memory 0x03800000 to OXO3FFFFFF

Expansion Board M 32

(up to 320 series flash)
Total Maximum 56M

NV-RAM (Battery Backed)

L ocation Address Range
Main Board — Boot, 0x04000000 to OxO41FFFFF 2M
e2ELEHESICES 0x04100000 to Ox041FFFFF (min user space) (first 1M 3
reserved*)
*subject to change
Top Memory Expansion 0x04400000 to OxO45FFFFF
Board Bank 0 2M 32
Top Memory Expansion 0x04600000 to Ox047FFFFF
Board Bank 1 M 32
Bottom Memory 0x04800000 to OXO49FFFFF
Expansion Board Bank 0 2M 16
Bottom Memory 0x04A 00000 to OxO4BFFFFF
Expansion Board Bank 1 2M 32
Total Maximum 10M (9M
user)
SDRAM (Dynamic Memory, volatile at hardwar e reset and power down)
Location Address Range Max Bytes B_us
Width

Main Board — Execution 0x06000000 to OXO6FFFFFF
areafor firmwareand 006000000 to OXOB1FFFFF (2M)
‘C’ User programs Program execution area, copied from flash

0x06200000 to Ox062FFFFF (1M)

Current Program ram storage and heap 16M

0x06300000 to Ox063FFFFF (1M) (8M User) 2

Reserved

0x06400000 to OXO6BFFFFF (8M)
'C' Development area

0x06c00000 to OXO6FFFFFF (4M)
Available, FTP re-flash area @ 0x06c00000.

Total Maximum 16M
(8M User)

Resource Filter Example

A Resource Filter dlows a'C' User Function to modify a value prior to the application
program receiving it or on a write operation, prior to it being written to the actual
resource. To implement a filter a User Function must first be registered with the
Quickstep OS, along with what Resource parameters will cause it to be invoked. A
RESOURCE_INFO structure is filled out and passed to the ‘“addResourceFilter”
function, specifying the type of resource to be monitored, read and/or write operation,
and the assigned resource number range. For example, adding a filter to register #2 is
given below. Only register 2 is monitored since the start and end range are the same:

RESOURCE_| NFO r esour ce;
voi d *handl e;

/'l Lets install a filter function as a sanple

resource. type = RESOURCE_REGQ STER

resource.start = 2; Il lets filter register 2
resource.end = 2; /1 no range, only 2 for now
resour ce. nnode = RESOURCE_READ; /1l read operation only

/1 Now add the filter...

handl e = addResourceFilter (& esource, sanpleFilter);

The sampleFilter function will ssimply divide any read operations by 2. Therefore, if
Quickstep or CTCMON were to read register 2 and a 40 was contained in it, the value
actually read back would be 20. This same technique can be used for any available
resource. By changing resource. end to a 6 (as in supplied sample program
User App. c), arange of registers can be specified. Below isasimple filter function:

int sampleFilter (void *handle, FILTERPARAMS *params, STDVAL value, RETVAL *status)

{
/I This sample filter simply processes a read or write operation on a register
switch(params->mode)
{
case RESOURCE_READ:
/I Someone is attempting to read the register, actual value in "value"
/I Let'sdivide it by 2 just for test purposes
if (value) // don't divide by O...
value = value/2;
break;
case RESOURCE_WRITE:
/I Thiswon't be called since we only defined for READ, bits are Or "ed
break;
}
/! Return new or same value to use
return value;
}

When finished with the filter, during cleanup, make sure you call
rel easeResour ceFi | t er, passing the handle of the resource.

Virtual Table, User and Quickstep

It is recommended that the programmer reference the sample programs included in the
distribution. Much of the detail provided below references the internal operations and is
not necessarily needed to construct user functions.

Two virtual tables exist which expose functions that are available, both of which are
defined inuTabl e. h. VTABLE QS isthetable provided by the 5200 OS and contains
the function calls available for the user program (other than the standard C library).
VTABLE USER isthetablethat isfilled in by the user program, asrequired. Asaquick
reference the tables are defined below:

KKK KKK KKK KKK KKK KKK KKK KKK KKK KRR KA R KR KR KRR KR Rk Rk ok

* struct vtableQS - Quickstep OS Function table *

* Virtual function table for access to Quickstep functions. *

* Thistableisinitialized by Quickstep OSat powerup. *

**/

typedef struct vtableQS
REGISTER_GET regRead; /I read a Quickstep register
REGISTER_PUT regWrite; /I write a Quickstep register
COMM_SENDMSG commSendM sg; /I Send a string out a serial port
COMM_GENERICCMD commGenericCmd; /I Send a command to a serial port
COMM_GET_RQST commReadM sg; /I Read a message from a serial port
ADD_RESOURCE_FILTER addResourceFilter; /I add a resource filter to the access list
REMOVE_RESOURCE_FILTER removeResourceFilter; /I remove a resource filter from the access list
GET_SYSTEM_TICS systemTics; /I Returns number of tics since powerup, in ms.
PRINTF printf; /1 printf function redirected to UDP debugger output screen
SPRINTF Sprintf; 11 sprintf function used by Quickstep, protected by mutex
LOGEVENTPLUS logEventPlus; /I Log a predetermined val ue type and value/string to the event log
LOGEVENT logEvent; I Log a low level value into the debug event log
FIREWATCHDOG fireWatchdog; /I Reset a watchdog timer, Quickstep callsit continually.

/I'1f for any reason not return control must be called in
/I less than 86 ms. or reset will occur.

ENTER_STEP_ATOMICITY enterStepAtomicity; /I Obtain ownership of step atomicity
EXIT_STEP_ATOMICITY exitStepAtomicity; /I Release ownership of step atomicity...

KA KKK KA KKK KRR KR KRR KA KRR KRR KRR R KA KRR KRRk Kk [

/I below virtual functions are for advanced use only and not

1/ offered for general support
/***/
MOTION_GET_NUMMOTORS Motion_GetNumMotors, /I Get number of motion objects in system
MOTION_GET_ATTRIBUTE Motion_Get_Attribute;

MOTION_PUT_ATTRIBUTE Motion_Put_Attribute;

MOTION_READY Motion_Ready; /1 Get state of motion object
MOTION_SIMPLE_COMMAND Motion_Simple_Command;

THREAD_CREATE thread_create; /I Create a new thread

THREAD_SUSPEND thread_suspend; /I Suspend an existing thread
THREAD_RESUME thread_resume; /I Allow a suspended thread to resume operation
THREAD_SLEEP thread_sleep; /I Seep for the specified number of tics (1mstic)
MUTEX_CREATE mutex_create; /I Create a mutex object

MUTEX_GET mutex_get; /I get control of the mutex

MUTEX_PUT mutex_put; /1 give control of the mutex back

MUTEX_DELETE mutex_delete; /I Destroy the mutex, giving all memory back

5100/5200 ¢C’ User Programming Guide

BYTE_ALLOCATE tx_byte_allocate; /I NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES
BYTE_RELEASE tx_byte release; /I NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES
BYTE_POOL_CREATE tx_byte pool_create; /I NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES
BYTE_POOL_DELETE tx_byte_pool_delete; /I NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES
INTERRUPT_CONTROL interruptControl; /I NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES

COMM_NETWORKOPEN commNetworkOpen; // Open a network connection/socket spawning RX thread
COMM_NETWORKCLOSE commNetworkClose; // Close a network connection
COMM_NETWORKSEND commNetworkSend; // Send data on a network connection

} VTABLE_QS;

KR KKK KKK KKK KKK KKK KKK KA K KKK KA KKK KKK KKK KKK KKK I KKK XK

USER VIRTUAL FUNCTION TABLE PROTOTYPE DEFINITIONS *

Virtual function table hooks for access by Quickstep OS
to call if defined during strategic points of system
execution.

Thistableisinitialized by user within their main()
function, with their 'C' functions, as needed, else place
aNULL in the table entry *

KKK KKK KKK KKK K KKK KA KKK KK KA KKK K KA KKK KKK A A XA KKK KK I KK KKK KKk KKk [

typedef int (*USER_INITIALIZATION)(void); /I Called when started, = main

L N
EE I

typedef int (*USER_OPERATION)(void *); /I Called to invoke a user operation
typedef void (* TIMER_INTERRUPT_HOOK)(); /' invoked every timer tic, don't stay herelong!!!
typedef int (*TASK_LOOP_HOOK)(SY SMODE state); /I invoked after all Quickstep tasks have executed, round robin

typedef int (*SUPERTASK_HOOK)(SY SMODE state); /Iinvoked after each Quickstep task

typedef int (*SERVICELOOP_HOOK)(SYSMODE state); // invoked after each Quickstep task

typedef void (*END_ALL_TASKS HOOK)(); /I invoked if all tasks are told to end.

typedef void (*USER_SHUTDOWN)(); /I'invoked if about to load another user module on top of this one.

KRR KKK KKK KKK KKK KKK KKK KKK KKK KKK A KKK KK A KKK KKK KKK F KKK XK

* struct vtableUser - User Defined Function table *
* *
* Virtual function table for access to User functions. *
* Thistableisinitialized by user within their main() *
* function, upon initial loading into memory and prior to *
* operation *
**/
#define VALID_USER_SIGNATURE 0x10adf7L /I Special identifier at start of User table, required

#define USER_VERSION_MASK OxffffO000L
#define USER_ENTRIES_MASK 0x000000ffL

#define USER_VERSION_REQUIRED 0x00010000L /I Not currently used

#define USER_ENTRIES_REQUIRED 8 /I 'Number of function entriesin the vtableUser structure

typedef struct vtableUser

{
long signature; /I 'Unique value to verify table is correct type
long version; /I Version control information to ensure compatibility
USER_INITIALIZATION initialize; /I User routine to be called at start, main() function
USER_OPERATION function; /I NOT USED
TIMER_INTERRUPT_HOOK timerTic; /I Invoked on every timer tic (1ms) if defined
TASK_LOOP_HOOK taskLoop; /I Invoked as a normal Quickstep step if defined
SUPERTASK_HOOK superTaskL oop; 1l Invoked after each Quickstep step, like a super task
SERVICELOOP_HOOK serviceLoopHook; /I Invoked outside the Quickstep main loop when steps not running
END_ALL_TASKS HOOK endAllTasks; // Invoked if all tasks are being shutdown by a Quickstep Cancel command
USER_SHUTDOWN userShutdown; /I 'nvoked when a new 'C' module is being loaded for cleanup purposes

} VTABLE_USER;

The function definitions and calling parameters are discussed in the “VTABLE QS
Function Prototypes and Definitions” section. The VTABLE_USER contains entries
which are previously set up and may be modified by the user. The table exists at the end
of the Cor eFunc. c file

Control Technology Corporation 24
Document 951-520004-0002 10/04 (Preliminary)

/I Below is main table referenced by the Quickstep Operating System, tread carefully when changing

/I as it must match that of the OS... NOTE: Change version and entries number in table!!!

const VTABLE USER localUserCommand __attribute ((section (".ftable"))) ={
VALID_USER_SIGNATURE, //signature

0x00010008, /I version 00.01, 8 entries
main, /linitialize

NULL, /I function unused
NULL, [/l timerTic;

taskL oop, /I taskLoop;

NULL, /I super TaskLoop;

NULL, /I servicelLoopHook;
NULL, /I endAll Tasks;
userShutdown /I user Shutdown;

1

Seven 5200 OS hooks are available for user modification. 1f a NULL is present then
no operation will be performed for that particular function call.

main —'C' user Program entry point upon being loaded. Any initialization should be
done here and control promptly returned to the calling functions.

timerTic — This function will be called once per 5200 timer tic, from the interrupt
level, approximately 1 millisecond/tic. Control must be returned to the 5200
immediately.

taskLoop — This function will be called once per Quickstep step loop, just like any
other task. Quickstep steps are executed round-robin. Upon return the first
Quickstep task will have a step executed since the 'C' user function taskLoop is
alwaysthe last task called. Note that step atomicity is maintained.

superTaskLoop — Same as taskLoop, except this function is called after each
Quickstep task executes a step.

endAllTasks — This function is called to notify the user function that there has
been a task “Cancel” command executed by Quickstep, causing task execution to
stop, and that any cleanup that should be done needs to be done now.

UserShutdown - This function is provided in Cor eFunc.c and is called
whenever a user program is about to be unloaded from memory and a new one
loaded. Freesall resourcesthat have been allocated and returns control.

5100/5200 ‘C’ User Programming Guide

VTABLE_QS Function Prototypes and Definitions

/**/

/* */
/* FUNCTI ON RELEASE */
/* */
/* mai n PORTABLE C */
/* 1.0 */
/* DESCRI PTI ON */
/* */
/* This function is the main input function called after a User */
/* Cfile is |loaded into nenory for execution. Any initialization */
/* requi red shoul d be done and control returned. */
/* */
/* MAKE SURE TO RETURN CONTROL AND DON'T TAKE LONG!! | F CALLED BY */
/* A QUI CKSTEP RUNNI NG A SCRI PT, YOU NAY HAVE TO | NVOKE A WATCHDOG */
/* RESET FUNCTION | F SPEND MORE THAN 40 Ms HERE (fireWatchdog()) */
/* */
/* I NPUT */
/* */
/* none */
/* */
/[* OJTPUT */
/* */
/* O = Initialization successful, allow User functions to execute */
/* non-zero = Init failed, do not run User functions */
/* */
/* CALLS */
/* - __main() call inserted by the conpiler prior to any other code */
/* - user define initialization routines, as required */
/* */
/* CALLED BY */
/* */
/* C User Function file |oader (Quickstep QS */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAME DESCRI PTI ON */
* *
/v Ny

/**/

int main (void);

Register Access

/**/

/* */
/* FUNCTI ON RELEASE */
[* */
/* r egRead PORTABLE C */
/* 1.0 */
/* DESCRI PTI ON */
/* Read a Quickstep Regi ster val ue. */
/* */
/* 1 NPUT */
/* U NT16 RegNum - Regi ster nunmber from1l to 64535 to read */
/* I NT32 *RegVal - Pointer to a 32 bit wide Integer to store the result*/
[* */
/* QUTPUT */
/* RETVAL - */
Control Technology Corporation 26

Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ‘C’ User Programming Guide

/*
/
/
/
/
/*
/*
/*
/
/
/
/
/
/
/

*
*
*
*
*
*
*

SUCCESS = function called properly
ERROR_NOT_DEFI NED = Qui ckstep OS table not found
(al so register specific return values defined in Errors. h)

CALLS
Qui ckstep OS virtual table function pointer

CALLED BY
As required by user code

RELEASE HI STORY
DATE NANME DESCRI PTI ON

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

RETVAL regRead(Ul NT16 RegNum | NT32 *RegVal);

/**/

/*
/*

/*

FUNCTI ON RELEASE
regWite PORTABLE C
1.0
DESCRI PTI ON
Wite a value to a Quickstep Register
| NPUT
U NT16 RegNum - Regi ster nunber from1l to 64535 to read
INT32 RegVal - 32 bit wide Integer value to store
OUTPUT
RETVAL -
SUCCESS = function called properly
ERROR_NOT_DEFI NED = Qui ckstep OS table not found
(al so register specific return values defined in Errors.h)
CALLS
Qui ckstep OS virtual table function pointer
CALLED BY
As required by user code
RELEASE H STORY

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

RETVAL regWrite(u NT16 RegNum | NT32 RegVal);

Communications

/**/

/*
/*

FUNCTI ON RELEASE
comSendMsg PORTABLE C

DESCRI PTI ON o
Send a buffer of characters out a serial conmunications port

I NPUT

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

*/
*/
*/
*/
*/
*/
*/
*/
*/

5100/5200 ‘C’ User Programming Guide

/ I NDX port - Serial port to send buffer out on, 1 is COML, 2 is COWR,*/
/* virtual TCP connections are 3 to 7 */
/* U NT8 *nsg - Pointer to unsigned character buffer containing nessage*/
/* U NT16 size - Length of nessage to send */
[* */
/[* OJTPUT */
[* RETVAL - */
/* SUCCESS = function called properly */
/* ERROR_NOT_DEFI NED = Qui ckstep OS table not found */
/* (al so register specific return values defined in Errors.h) */
[* */
/* CALLS */
/* Qui ckstep OS virtual table function pointer */
[* */
/* CALLED BY */
/* As required by user code */
[* */
/* RELEASE HI STORY */
[* */
[* DATE NAME DESCRI PTI ON */

* *
/- Y

/**/
RETVAL commSendMsg(INDX port, U NT8 *nsg, U NT16 size);

/**/

/* */
/* FUNCTI ON RELEASE */
/* */
/* comrCGener i cCnd PORTABLE C */
/* 1.0 */
/* DESCRI PTI ON */
/* This function sends a generic nessage conmand (undefined format) of*/
/* l ength "size" to the specified "port" using the appropriate driver.*/
/* Any response is copied back to "nmsg"; the size of the of the */
/* response it copies back to "size". */
/* Messages can be used to change baud rate, etc... */
/* */
/* I NPUT */
/* I NDX port - Serial port to send buffer out on, 1 is COML, 2 is COWR, */
/* virtual TCP connections are 3 to 7 */
/* U NT8 *nsg - Pointer to unsigned character buffer containing nessage*/
/* U NT16 *size - Pointer to unsigned short to store result length in */
/* */
/* OUJTPUT */
/* RETVAL - */
/* SUCCESS = function called properly */
/* ERROR_NOT_DEFI NED = Qui ckstep OS table not found */
/* (al so register specific return values defined in Errors. h) */
/* */
/* CALLS */
/* Qui ckstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAMVE DESCRI PTI ON */
/* */
/* */

/**/

/* Below are nsg[] contents commands for each available. The comand
nust */

Control Technology Corporation 28
Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ‘C’ User Programming Guide

/* be the first byte of nsg[] upon calling the function
COVWCMD_RQST_QUERY - READ
Check if the transmitter is free for nessage sendi ng.
Upon return:
nsg[0] = Ox00 if free
msg[1] = OxO01 if busy.
*size = 1.
COWCMD_RQST_CLRBUF - WRI TE
Cl ear the communications receive buffer
Upon return:
nsg[0] = COVMCVD_RSPN_ACK
*size = 1;
COVWCMD_RQST_PARSI NG - WRI TE
Turn parsing on or off based on the third byte of the nessage.

Set nsg to:

msg[2] = 0 then disabl e parsing
nsg[2] = 1 then enabl e parsing
Upon return:

nsg[0] = COVMCMD_RSPN_ACK;
*size = 1;

COMWCMD_RQST_GETCNT - READ
Return the current receive buffer count.
Upon return:
nmsg[0] = current count
*size = 1;
COVWCMD_RQST_GETCH - READ
Retrieve the nth character in the receive buffer
Set nsg to:
nsg[2] = offset in buffer with 0 being first character
Upon return:
msg[0] = character at position requested
*size = 1;
COVWMCMD_RQST_SET _MODBUS - WRI TE
Activat e/ Deactivate Serial port nodbus and set gl obal port to use.
Set nsg to:
nmsg[2] = Mbdbus RTU serial port address 1 to 254, also enables, 0
di sabl es
Upon return:
nsg[0] = COVMMCMD_RSPN_ACK
*size = 1;
COVWCVD_RQST_NEWBAUD - WRI TE
Change the baud rate on the serial port (only physical, not virtua
wor k)
nsg[2] = baud rate desired where 1 = 600, 2 = 1200, 3 = 2400, 4 =

4800,
5 = 9600, 6 = 19200 (default at powerup), 7 = 38400.
Upon return:
nmsg[0] = COMMCMD _RSPN NACK i f bad val ue, or COVMMCMD RSPN ACK if OK
*size = 1;
*/

RETVAL commGenericCmd(INDX port, U NT8 *msg, Ul NT16 *size);

/**/

/ *

/* FUNCTI ON RELEASE

/ *

/* comReadMsg PORTABLE C

/* 1.0

/* DESCRI PTI ON

/* This function invokes the driver associated with "port" and

/* returns a pointer to the buffer that contains the request nessage.
/* The nmessage contents are NOT copied. |If a request nmessage from
/* the port is not available, the "buf" pointer is set to NULL. The
/* nessage contents are assuned to be encoded in one of the standard
Control Technology Corporation 29

Document 951-520004-0002 10/04 (Preliminary)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

5100/5200 ¢C’ User Programming Guide

protocols. Size is set to the nunber of received bytes in the
buffer, not the nunber of bytes in the nessage.

I NPUT

virtual TCP connections are 3 to 7
U NT8 **pbuf - Pointer to unsigned character buffer stored here or
NULL i f no nessage
U NT16 *size - Nunber of bytes in buffer
QUTPUT
RETVAL -
SUCCESS = function called properly
ERROR_NOT_DEFI NED = Qui ckstep OS table not found
(al so register specific return values defined in Errors.h)

CALLS
Qui ckstep OS virtual table function pointer

CALLED BY
As required by user code

RELEASE HI STORY
DATE NANME DESCRI PTI ON

¥k 3k 3k k oF Sk 3k 3k 3k X Sk 3k 3k X X X X 3k 3k 3k X X

B e e e T L

I NDX port - Serial port to send buffer out on, 1 is COM, 2 is COW,

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

RETVAL commReadMsg(INDX port, U NT8 **buf, U NT16 *size);
Diagnostics
RETVAL |OgEvent(Event Code event, |ong paraneter);

Motor Control
TBD functions available in distribution but being further defined.

u NT16 Motion_GetNumMotors(voi d);

RETVAL Motion_Get_Attribute(U NT8 MotorNum UINT8 Attribute, STDVAL
*val ue);

RETVAL Motion_Put_Attribute(UI NT8 MbtorNum U NT8 Attribute, STDVAL
val ue) ;

RETVAL Motion_Ready(U NT8 Mot or Num STDVAL *val ue);

RETVAL Motion_Simple_Command(u NT8 Mt or Num U NT8 Conmand);

Resource Filters

/**/

/ *

/* FUNCTI ON RELEASE

/ *

/* addResour ceFi |l ter PORTABLE C

| * 1.0

/* DESCRI PTI ON

Control Technology Corporation 30

Document 951-520004-0002 10/04 (Preliminary)

*/
*/
*/
*/
*/
*/

5100/5200 ‘C’ User Programming Guide

/ This function is called to add a resource filter to the Quickstep */
/* list. The resource to nonitor is defined in the RESOURCE | NFO */
/* structure and passed as a paraneter. A pointer to the 'C function */
/* to call upon access is al so passed */
/* */
/* 1 NPUT */
/* RESOURCE | NFO *rsc - Pointer to structure defining resource and */
/* access nethod upon which to invoke the passed function */
/* FI LTER FUNCTION func - Pointer to 'C function to call when the */
/* paraneters of the RESOURCE | NFO structure are satisfied */
/* */
/* OJTPUT */
/* void *handl e - Handl e returned by addResourceFilter or NULL if */
/* failed */
/* */
/* CALLS */
/* Qui ckstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAME DESCRI PTI ON */
/* */
/* */
/**
* RESOURCE_I NFO rsc - addResourceFilter paraneter block *
* *
* This paranmeter block nust be filled out prior to registering *
* a callback function for a Quickstep resource. A pointer to *
* it is passed to the addResourceFilter() function *
**/
/*
typedef struct resourcelnfo {

int type; /1 Type of resource to add filter to
RESOURCE_ANALOG N, RESOURCE_ANALOGOUT, etc..

i nt node; /'l Type of access to invoke filter on when accessed
RESOURCE_READ, RESOURCE_WRI TE

int start; /1 Start nunber of resource (setting a range)

int end; /1 End nunber of resource, nmake same as start if

only one (setting a range).

} RESOURCE_I| NFO

*/
/**

FI LTER_FUNCTI ON f unc
Type definition for Resource Call back function

PARAVETERS:

void *handl e - handl e returned by addUser ResourceFilter when

function was registered

FI LTERPARANMS *parans - Access infornmation block to detai

what is being done

STDVAL val ue - Current value being read or witten.

RETVAL *status - pointer to status code that will be returned
to Quickstep. Leaving it unchanged will
default to SUCCESS. Use only for defined
errors.

RETURNS:
int - newvalue to return to Quickstep on a read or value to
wite, if no change then return passed "val ue"

* %k ok ok ok ok ok ok ok ok ok ok ok ok Kk ok Ok Ok
* % ok ok ok ok ok % ok ok ok ok ok Kk ok Ok Ok

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

31

5100/5200 ‘C’ User Programming Guide

***/

voi d *addResourceFilter(RESOURCE_I NFO *rsc, FILTER_FUNCTI ON func);

/**/

/*
/*
/*

~
*

D N N N N N N
E R SRR T R R R R R G T I R R N

/*

/***

FUNCTI ON
renoveResourceFil ter

DESCRI PTI ON
This function is called to renove a resource filter

Quickstep list. Afilter is renmoved by passing the handl e that

was returned when it was first added.

| NPUT
voi d *handl e - Handl e returned by addResourceFilter

QUTPUT
RETVAL -
SUCCESS = function called properly
ERROR_NOT_DEFI NED = Qui ckstep OS table not found

CALLS
Qui ckstep OS virtual table function pointer

CALLED BY
As required by user code

RELEASE HI STORY

RELEASE

PORTABLE C

1.0

fromthe

DATE NANME DESCRI PTI ON

RETVAL removeResourceFilter(void *handl e);

System Functions

RETVAL enterStepAtomicity(void);

RETVAL exitStepAtomicity(void);

/***

/*
/*
/*

~
*

—~— e e e e e~ —
¥k 3k X X X ok 3k 3k F X

FUNCTI ON
systenii cs

DESCRI PTI ON

This function is called to reset the watchdog systemtiner that
will cause a systemreset and fault if not invoked every 86 ns.
Qui ckstep OGS w Il automatically call this function as required

RELEASE

PORTABLE C

1.0

but if a User Function runs as a step it nust nake the cal
mai ntai ns control too long, preventing Quickstep OS fromcalling

t he function.

I NPUT
none

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

i f

it

32

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/

5100/5200 ‘C’ User Programming Guide

/* */
/* QUTPUT */
/* unsi gned long - nunber of systemtics, in mlliseconds since powerup*/
/* */
/* CALLS */
/* Qui ckstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HI STORY */
[* */
/* DATE NANVE DESCRI PTI ON */
* *
/- Y
/**/
unsi gned | ong SySten1T1CS(void); /1l nunber of timer tics since

powerup, 1ns/tic currently

/**/

/* */
/* FUNCTI ON RELEASE */
/* */
/* firewat chdog PORTABLE C */
/* 1.0 */
/* DESCRI PTI ON */
/* This function is called to reset the watchdog systemtiner that */
/* will cause a systemreset and fault if not invoked every 86 ns. */
/* Quickstep OGS will automatically call this function as required */
/* but if a User Function runs as a step it nust nake the call if it */
/* mai ntai ns control too long, preventing Quickstep OS fromcalling */
/* the function. */
/* */
/* I NPUT */
/* none */
/* */
/[* OJTPUT */
/* RETVAL - */
/* SUCCESS = function called properly */
/* ERROR_NOT_DEFI NED = Qui ckstep OS table not found */
/* */
/* CALLS */
/* Qui ckstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAMVE DESCRI PTI ON */
/* */
/* */

/**/

RETVAL fireWatchdog(void);

Threading
/**/
/* x|
/* FUNCTI ON RELEASE x|
/* */
Control Technology Corporation 33

Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ‘C’ User Programming Guide

/ _tx _thread create PORTABLE C */
/* 1.0 */
/* DESCRI PTI ON */
/* */
/* This function creates a thread and places it on the list of created */
/* t hr eads. */
/* */
/ | NPUT */
/* */
/* thread_ptr Thread control block pointer */
/* nane Pointer to thread nanme string */
/* entry function Entry function of the thread */
/* entry_input 32-bit input value to thread */
/* stack start Pointer to start of stack */
/* stack_size Stack size in bytes */
/* priority Priority of thread (0-31) */
/* preenpt threshold Preenption threshold */
/* time_slice Thread tine-slice val ue */
/* auto_start Automatic start selection */
/* */
/* OUTPUT */
/* */
/* return status Thread create return status */
/* */
/* CALLS */
/* Qui ckstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* Appl i cation Code */
/* _tx timer_initialize Create systemtiner thread */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAME DESCRI PTI ON */
/* */

/**/

unsi gned int _tX_thread create(TX_THREAD *thread_ptr
/* Task Name */
char *nanme_ptr,
/* Routine and Paraneter to pass */
void (*entry_function)(unsigned |ong), unsigned |ong entry_input,

/* Stack start and length */
void *stack_start, unsigned |ong stack_size,

/* Priority and Threshold */
unsigned int priority, unsigned int preenpt_threshold,
/[* time slice */
unsigned long tine_slice, unsigned int auto_start);

/~k***********************/

[* */
/* FUNCTI ON RELEASE */
/* */
/* _tx_thread_suspend PORTABLE C

*/

/* 1.0 */
/* DESCRI PTI ON */
/* */
/* This function handl es application suspend requests. |If the suspend */
/* requi res actual processing, this function calls the actual suspend */
/* thread routine. */
/* */
/* 1 NPUT */
/* */
Control Technology Corporation 34

Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ‘C’ User Programming Guide

/* thread_ptr Pointer to thread to suspend */
/* */
/* OUTPUT */
/* */
/* st at us Return conpl eti on status */
/* */
/* CALLS */
/* Qui ckstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* Application code */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAMVE DESCRI PTI ON */
/* */

/**/
unsi gned int _tXx_thread_suspend(TX_THREAD *thread_ptr);

/**/

/* */
/* FUNCTI ON RELEASE */
/* */
/* _tx_thread resune PORTABLE C */
/* */
/* DESCRI PTI ON */
/* */
/* This function processes application resune thread services. Actual */
/* thread resunption is perforned in the core service. */
/* */
/* I NPUT */
/* */
/* thread_ptr Pointer to thread to resune */
/* */
/* OUTPUT */
/* */
/* stat us Service return status */
/* */
/* CALLS */
/* Qui ckstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* Appl i cation Code */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAMVE DESCRI PTI ON */
/* */

/**/
unsigned int _tXx_thread resume(TX_THREAD *thread_ptr);

/**/

/* */
/* FUNCTI ON RELEASE */
[* */
/* _tx_thread_sl eep PORTABLE C */
/* 1.0 */
/* DESCRI PTI ON */
/* */
/* This function handl es application thread sleep requests. If the */
/* sl eep request was called froma non-thread, an error is returned. */
/* */
/* 1 NPUT */
Control Technology Corporation 35

Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ‘C’ User Programming Guide

/* */
/* tinmer_ticks Nunmber of tinmer ticks to sleep*/
/* */
/* OUJTPUT */
/* */
/* st at us Return conpl eti on status */
/* */
/ CALLS */
/ _tx_timer_activate Activate sleep tiner */
/* _tx_thread_suspend Actual thread suspension */
/* */
/* CALLED BY */
/* */
/* Application code */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAMVE DESCRI PTI ON */
/* */

/**/
unsi gned int _tXx_thread_sleep(unsigned Iong tics);

/**/

/* */
/* FUNCTI ON RELEASE */
/* */
/* _tx_mutex_create PORTABLE C */
/* 1.0 */
/* DESCRI PTI ON */
/* */
/* This function creates a nutex with optional priority inheritance as */
/* specified in this call. */
/* */
/* I NPUT */
/* nmut ex_ptr Pointer to nutex control block*/
/* nane_ptr Poi nter to nmutex name */
/* i nherit Priority inheritance option */
/* */
/* OUJTPUT */
/* TX_SUCCESS Successful conpletion status */
/* */
/* CALLS */
/* */
/* None */
/* */
/* CALLED BY */
/* Appl i cation Code */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAME DESCRI PTI ON */
/* */

/**/

unsi gned int _txe_mutex_create(TX_MJUTEX *mutex_ptr, char *name, unsigned
int inherit);

/**/

/* */
/* FUNCTI ON RELEASE */
/* */
/* _tx_nutex_get PORTABLE C */
/* 1.0 */
/* DESCRI PTI ON */
Control Technology Corporation 36

Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ‘C’ User Programming Guide

/* */
/* This function gets the specified nutex. |If the calling thread */
/* al ready owns the nmutex, an ownership count is sinply increased. */
/* */
/* I NPUT */
/* nmut ex_ptr Poi nter to nutex control bl ock */
/* wait_option Suspensi on option */
/* */
/* OUTPUT */
/* st at us Conpl eti on status */
/* */
/* CALLS */
/* _tx_timer_activate Activate tinmer routine */
/* _tx_thread_suspend Suspend thread service */
/* _tx_mutex_priority_change Inherit thread priority */
/* */
/* CALLED BY */
/* Appl i cation Code */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAME DESCRI PTI ON */
/* */

/**/

unsi gned int _txe_mutex_get(TX MJUTEX *mutex_ptr, unsigned |ong
wait_option);

/**/

/* */
/* FUNCTI ON RELEASE */
/* */
/* _tx_nmutex_put PORTABLE C */
/* 1.0 */
/* DESCRI PTI ON */
/* */
/* This function puts back an instance of the specified nutex. */
/* */
/* 1 NPUT */
/* mut ex_ptr Poi nter to nutex control bl ock */
/* */
/[* OJTPUT */
/* TX_SUCCESS Success conpl etion status */
/* */
/* CALLS */
/* _tx_timer_deactivate Deactivate tinmer routine */
/* _tx_thread_resune Resune thread service */
/* _tx _thread_systemreturn Return to systemroutine */
/* _tx_mutex_priority_change Restore previous thread priority */
/* _tx_nutex_prioritize Prioritize the nutex suspension */
/* */
/* CALLED BY */
/* Appl i cation Code */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAME DESCRI PTI ON */
/* */

/**/
unsigned int _tXxe_mutex_put(TX_MJTEX *nutex_ptr);

/**/

/* x|
/* FUNCTI ON RELEASE */
Control Technology Corporation 37

Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ‘C’ User Programming Guide

*

/*
/*
/*
/*
/*

_tx_nutex_del ete PORTABLE C
1.0
DESCRI PTI ON

This function deletes the specified nmutex. All threads
suspended on the nutex are resunmed with the TX DELETED st at us
code.

I NPUT
nmut ex_ptr Pointer to nutex control bl ock
QUTPUT
TX_SUCCESS Successful conpletion status
CALLS
_tx_timer_deactivate Deactivate tiner routine
_tx_thread_resune Resune thread service
CALLED BY

Application Code
RELEASE HI STORY
DATE NAVE DESCRI PTI ON

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

unsigned int _txe mutex_delete(TX_MUTEX *nutex_ptr);

UDP Networking

/**/

/ *

/* FUNCTI ON RELEASE

/ *

/* commNet wor kOpen PORTABLE C

/* 1.0

/* DESCRI PTI ON

/* This function requests that a Network UDP or TCP port be openned.
/* A RX thread will be spawned to automatically nonitor the socket
/* state. This functions a USERCONNECTI ON control bl ock that mnust
/* not be nodfied after a successful call and should be treated as
/* a connection HANDLE on other Network calls. A callback routine
/* nmust be suppl ed as one of the USERCONNECTI ON par aneters which will
/* be i nvoked whenever a change of state occurs, including packet

/* reception.

/ *

/* I NPUT

/* USERCONNECTI ON *user - Structure used to pass connection/socket
/* informati on, nust be initialized prior to call. Only
/* networ k type NETWORK TYPE UDP currently supported

/* OUTPUT

/* int - O0if success and -1 if failed

/* user->state set to USER FAI LED or USER_CONNECTI NG

/* NOTE: Once user->state beconmes USER CONNECTED this structure
/* may be nodifed and used for comNet wor kSend operati ons
/* It is cloned by the network thread. The copy is what is
/* nodi fi ed and supplied to the callback function

/* CALLS

Control Technology Corporation 38

Document 951-520004-0002 10/04 (Preliminary)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

5100/5200 ‘C’ User Programming Guide

/* Qui ckstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAME DESCRI PTI ON */
/* */
/* */

/**/

int comrNet wor kQpen(USERCONNECTI ON *user) ;

/**/

/* */
/* FUNCTI ON RELEASE */
/* */
/* comm\et wor kCl ose PORTABLE C */
| * 1.0 */
/* DESCRI PTI ON */
/* This function requests that an existing network connection/socket */
/* created with a call to conmNetworkQpen, be closed. The sane */
/* USERCONNECTI ON structure passed to the comrNet wor kQpen call should */
/* be passed to this function. */
/* */
/* I NPUT */
/* USERCONNECTI ON *user - Structure used to pass connection/socket */
/* i nformati on, nmust be initialized prior to call. Only */
/* networ k type NETWORK TYPE UDP currently supported */
/* Shoul d be sane USERCONNECTI ON passed to comiNet wor kOpen */
/* */
/* OJTPUT */
/* NONE */
/* user->state nodified to either USER_FAI LED or USER DI SCONNECTED */
/* */
/* CALLS */
/* Qui ckstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE H STORY */
/* */
/* DATE NAME DESCRI PTI ON */
/* */
/* */

/**/

voi d commNetworkClose(USERCONNECTI ON *user) ;

/**/

/* */
/* FUNCTI ON RELEASE */
/* */
/* comNet wor kSend PORTABLE C */
/* 1.0 */
/* DESCRI PTI ON */
Control Technology Corporation 39

Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ‘C’ User Programming Guide

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

This function requests that a packet be sent on a connection */
openned by conmNet wor kOpen. The USERCONNECTI ON control bl ock */
must contain the proper information. */

*/

| NPUT */
USERCONNECTI ON *user - Structure returned by conmNet wor kQpen with */
foll owi ng paraneters set as desired: */

packet Buf - pointer to buffer to send */

l ength - nunber of bytes to send */

destlp - If UDP, destination |IP address */

destPort - if UDP, destination port address */

*/

QUTPUT */
int - nunber of bytes queued */
user->state set to USER FAI LED or USER DATAQUEUED */
NOTE: Limted queuing is available at the network stack | evel */
exceeding this will result in packet loss. Do not send */

a | arge nunber of packets to the host wi thout using a */

protocol that can verify packets have been transfered. */

This is typically only a problemif you attenpt to sit in a*/

| oop continually transmitting data. */

CALLS */
Qui ckstep OS virtual table function pointer */
*/

CALLED BY */
As required by user code */
*/

RELEASE HI STORY */
*/

DATE NAME DESCRI PTI ON */

*

N

/**/

int commNetworkSend(USERCONNECTI ON *user)

Control Technology Corporation 40
Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ‘C’ User Programming Guide

Blank

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

41

CHAPTER

UDPTERM/ogEvent Utilities

UDPTerm is an unsupported tool which executes on your PC. It is
extremely useful while trying to debug 'C' User programs. It
communicates with the controller using UDP packets and listens for
output, such asthat from 'printf' statements.

LogEvent is a function call that can be used to write ‘unsigned long’
values to a log buffer, for display from within UDPTerm. This is useful for low level
debugging where slowing the processor down with a printf statement could cause a
problem. In addition, ‘logEvent is helpful when numerous writes are useful. It is also
used internally by CTC to log any exceptions that may occur or network connections,
reboots, and other helpful debugging information. A circular buffer is used. The
function call consists of:

logEvent(EVENT_DEBUG,unsigned long); // whereuser suppliessupply the unsigned long

When the controller is busy, 'printf' output may not always appear so if there is
any question you will want to use the logEvent(EVENT_DEBUG,####); routine.

Invoking UDPTerm

To invoke UDPTerm, on your PC the IP address of the terminal and the port to send and
listen on is required. Only port 1202 is supported by the controller. The following
example shows how to connect to a controller with the | P address of 12.40.53.158:

UDPTerm 12.40.53.158 1202 1202

After contact is made press the Enter key a few times and the ‘Command:” prompt will
appear. There are numerous commands, some of the useful ones are:

a

#00009 log was done with

the

thread

| - list log, logEvent values can be viewed with this command. For example in the
Startup’

‘Network
logEvent(EVENT DEBUG,3015); function call.

b oo = 5 S 5 o0 o (S
= = = =
|||||| £ 5 o
==k
& oo oo oo & y 5 5 L
=1 | P oo o B 1 o o A B 111
50 50 T Ga T o0 T=T: I=1=1:
S ¢ 111
= S S0 w0 | 1 &
= o g g 5 o I=1=1
= = 5 () o S S 15 (5
50 50 GO GO GO 00 6D = S
eSS & & (51 L) L) O O O R O O I
B D 0 D o D
=) 5) O) () 50 5O GR GR GO 0 68
= RIS
= 0 oD o o o o o
= = EEE S S S &
= &
|||||| DEEOEES o0 0 o
=
5 15 AR 1
| B B) e
1 Y Y Y B Y e i o et e o ot
ey oo 50 50 GO o
=
I O
= 1) 1 O) O O ()
Jeofofggug o)l
)) e) P P O)) e e P 1 (e ¢
ITEEEEEINCIENEEEEEE G
11-1-1=1 P
) (51 (551 (50 (5 () e b o e o g g e 1=1=1
) o e . =11
Ay SR -
1111 111
Jeofolog
S o
) 5 S I v e 60 60 6] 6
))) e e e P pe
AR v & {4 bl A bl A/
))
ITEEEED RS =1=T
D) [P e [P
=1=1-1-11 =11
) =11
= & S =1=1
11111 111
I EEEEE S =)=l
e e) B
S S =11
) 111
=1=1-T
)) B
=1=1-1
| B
=1=1-T
)) B
=1=1-1
|
=1=1-k
S o

L <>
o 72

halt thread

memory Used
RBn= resume thread

Hn

all tasks
counters
pools
mutexes
qUELES
semaphores
= task n

[T [|
8 G g O e

-]
@
EN
[
[T

==

oom
E
mE
=1 =]
] 0

Processing

m
=
=
]
7]
']
]
.__D
P
=M

Command

L X - clear log
0 ? - thread help

0 - list threads running summary
Command = o

Procezzing = o ()
Unrecognized command . displaying status

Status - @
Ready Bits : G86AA168208

System Timer Thread Suspended

Q% Main Ready to run

Thread Monitor Suspended

Metwork Startup Waiting on Delay
CTC_BF_18863261 Waiting on Event Flag
Command Proceszzor Ready to »un

GDE thread Suspended

Analog Input Scanner Waiting on Delay
CIC_BF_18863261 Waiting on ICP-IP

UDPF Peer to Peer RA Waiting on TCPAIP
TCP Modbus Slave Suspended

UDP Peer to Peer THE Waiting on Queue
UDP Binary Protocol RA YWaiting on TCPAIP
TCP Binary Server Suspended

SNTP Client Waiting on Delay

CTServer Broadcast R¥ Waiting on TCGP-AIFP
FTP Server Suspended

TELHET Server Suspended

Weh Thread Suspended

UNUSED Suszpended

Processing = o <m>
Total Mutexesz 33
Mutex ‘Malloc Mutex' Id : 4d555445, Pending tasks @
Ouvner = Mone
Mutex ‘Local printf Mutex' Id = 4d555445_. Pending tasks @
Ouvner = Mone
Mutex ‘Resource Filter Mutex’ Id - 44555445, Pending tasks @
Ovner = Mone
Mutex ‘Quickstep Safe' Id : 4d555445, Pending tasks @
Ouvner = Mone
Mutex ‘Step Atomicity’ Id @ 44555445, Pending tasks A
Ovner = Mone
Mutex ‘CTC_BF_18863261° Id = 4d555445%, Pending tasks @
Ovner = Mone
Mutex *SPI Select' Id : 4d555445, Pending tasks @
Ouner = Hone
Mutex ‘Parse Binary® Id : 4d555445, Pending tasks @
Ouner = Hone
Mutex ‘CommB General’ Id : 44555445, Pending tasks A
Ouwner = Mone
Mutex ‘Uolatile Register Put® Id 44555445, Pending taszks 8
Ouwner = Mone
Mutex ‘Uolatile Register Get' Id 44555445, Pending tasks @

ot - list threads and detailed information

Command = o t

Processzing = o (t2>

nll Tasks =

Task ‘System Timer Thread’ at 62h57ic
Priority B, Threzhold A

Stack 62cadcB:62calbhf,. 62calbhd

Short Stack Frame B

R&—-Ri4,. MACH.L, FR. SR
B62h15Ff8 APBABAA1 B62caBB88 B62bi5ac BL2h57h4 BLZh5668 BAL2calB4 AHABABAA
AEPERARA BLBAf23a BERARAAL

Tazk ‘Q5 Main' at 62cBadd
Priority 12, Threshold 12
Status (A> Ready to run

Count 38324 Delav 8

Stack 6Z2cBhbbc:62clbbh,. 6Z2claal

RB-R14. MACH.L. PR. PC. SR
AAAEAAA1 A62aaT48 B6B23170 A6BZL270 B6A4bfal A62aa?lc 1AAleBlc APABABOA
B6A2318e 10@1e018 1081e00c OPEEONOHE 1901e8B0c BOPNABBH2 BOBEBO28 B62clhé4
BB0BEEEE B6B4c322 B62c1bB8 B62clib2B

Net ? — network help

Command = net 7

Processing = net (7>

I Cad» IP Address
Cad> Subnet Mask
Cad> Gateway

CTC Hode

NIC Address

Cad?

Counters

Sockets Open
D Display all
Command :

net - network state and information, 1P, MAC...

M
G
N <ad>
H
i
5

Proceszing : net (2>

Unrecognized command . displaving all
IPF Address (c283561>, 812 _840_653_8%97
Subnet Mask (FffFFFAAS,. 255 _ 255 2558060
Gateway (c2835ce?,. B12.848.853.284

CIC Hode B, Working @

NIC Addrezz BBcB—ch?7-8d47d

Command =

dhcp - dhep information
Command : dhcp

Processing = dhcp <2
Inrecognized command ., Display status

DHCP Status
Hid ?23c87978,. State = Bound
= Al2.A48.05%3.@97
IPF = 612 ._6848.653 .6088
Packet Pool : CIC_BF_18863261. Socket = CIC_BF_18863261 .
Lease 86408 24:00:88. Renew 43200 12:88:88,. Rehind 756860 21:-88:88
Timeout 432808 12:88:88,. left -1

Current IP = B12.848.85%3.0897 SubNet = 255.255.255.8008 Gateway = H12.0840.853.284

Enter optional command, addresz and length
Commands are D — Display Data C(defaunlt?>
T — Test RAM

E — Erasze Flash
— Get Flash Block Size
M — Display Map
Add a D or d for decimal display.
Add a W or v for word access display.
Command =

m Oxaddress - dump memory starting at Ox#HEH#H#HH#E In hex

All of these commands are the same as used when using telnet and run the 'enable
debug' command. Also only one instance may run at atime on the PC.

5100/5200 ‘C’ User Programming Guide

Blank

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

47

5100/5200 ‘C’ User Programming Guide

CHAPTER

UserApp.c Sample Program

This section includes sample code which is distributed within the ‘C’
Development kit for the controller. This program introduces the
concepts of register filters, serial and network communications.

AR R R EEEEEEEEEEEEEEEEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEERY

/* MODULE: userApp.c */
/* */
/* MODULE DESCRI PTI ON: */
/* */

/* This nodule is provided as an exanple for accessing the Quickstep OGS */
/* froma C programm ng environnent. The supplied nmain() exanple is for */
/* reference only and nmust exi st somewhere in the users code and it must */

/* return control in a tinely fashion. */
/* */
/* REVI SI ON HI STORY: */
/* */

AR R EE R R R R R R R R R R R Ry

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#i ncl ude <math. h>

/1 Always include CoreFunc.h in any nodule that will access the Quickstep OS
#i ncl ude " CoreFunc. h"

#define ESC "\ x1B"

/'l Function prototype
int sanpleFilter(void *handl e, FILTERPARAMS *parans, STDVAL val ue, RETVAL *status);

/**/

/* */
/* FUNCTI ON RELEASE */
/* */
/* nai n PORTABLE C */
/* 1.0 */
/* DESCRI PTI ON */
/* */
/* This function is the main input function called after a User */
l* Cfile is loaded into nenory for execution. Any initialization */
/* required shoul d be done and control returned. */
/* */
/* MAKE SURE TO RETURN CONTROL AND DON'T TAKE LONG!! | F CALLED BY */
/* A QUI CKSTEP RUNNI NG A SCRI PT, YOU MAY HAVE TO | NVOKE A WATCHDOG */
Control Technology Corporation 48

Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ‘C’ User Programming Guide

/*

RESET FUNCTI ON | F SPEND MORE THAN 40 MS HERE (fireWat chdog())
I NPUT

none
QUTPUT

O = Initialization successful, allow User functions to execute
non-zero = Init failed, do not run User functions

CALLS
- __main() call nust be nadie prior to any other code
- user define initialization routines, as required
CALLED BY
C User Function file | oader (Quickstep OS)
RELEASE HI STORY

DATE NANVE DESCRI PTI ON

/**/

int __min();

int main (void)

{

RESQURCE_| NFO r esour ce;
voi d *handl e;

__main();

/'l Log Event Code to signal we nade it here successfully. This is not
/'l required but placed here as test code. Note all user Events shoul d

/1 start at 50000, below that is reserved for Quickstep OS
| ogEvent (EVENT_DEBUG, 50000);

/1 Send a nessage to the UDP Debugger screen as though it was our STDI O out put

printf("Hello World.\r\n");

/Il Lets install a filter function as a sanple
resource. type = RESOURCE_REG STER,

resource.start = 2; /1 lets filter register 2
resource. end = 6; /1 no range, only 2 for now
resour ce. nbde = RESOURCE_READ; /'l read operation only,

RESOURCE_V\RI TE

}

/1 Now add the filter...
handl e = addResourceFilter (& esource, sanpleFilter);

/1 if error occurs return non-zero and User functions wll not

return(0);

if wite too would |

run. ..

/'l User Filter Exanple, register 2 to 6 will be divided by 2 when witten
int sanpleFilter(void *handl e, FILTERPARAMS *parans, STDVAL val ue, RETVAL *status)

{

/1l This sanple filter sinply processes a read or wite operation on a register

swi t ch(par ans- >node)

{
case RESOURCE_READ:
/1 Sonmeone is attenpting to read the register, actual
/1 Let's divide it by 2 just for test purposes
if (value) /1 don't divide by O...
val ue = val ue/ 2;
br eak;
case RESOURCE_WRI TE:

value inin

"val ue"

/1 Let's not do anything on a wite operation, we could have added filter
/1 so only reads called this funtion also but this is for future reference

/1l on how to process a wite

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

49

5100/5200 ‘C’ User Programming Guide

br eak;

/1 Return new or sane value to use
return val ue;

}

/1 User taskLoop Function Exanple invoked on nmain Quickstep loop after all steps execute
/1 NOTE: THI S ONLY RUNS WHEN CONTROLLER |I'S NOT FAULTED! !!

I EVEN | F QUI CKSET |I'S NOT USED NEED A SI NGLE | NSTRUCTI ON QUI CKSTEP PROGRAM I N THE
CONTROLLER!

/'l user ServiceLoopHook is called when faulted and al so after every task step

/1 you may use the SYSMODE state to determ ne when taskLoop is not running, possibly only
runni ng

/1 certain tasks when in FAULT node, |ike comunications. Note that if faulted power is
/1 is turned off on the outputs (VBIAS).

int taskLoop(SYSMODE st at e)

{
void testSerial (int);
void testNetwork();
/1 Note spending nmore than 40 ms in this loop will cause a watchdog fault! Not
/1 including time may be pre-enpted by interrupts and conmuni cation threads
/1 firewWatchdog(); wll need to be called to reset tinmer if do.
/1 (Watchdog reset upon entry and exit of this function, automatically)
test Serial (COML) ;
t est Net wor k() ;
return O; /1 always return O, not used but may be sone day

}

/'l Serial port test function
/1l commPort = COML or COMR for hardware serial ports
/!l Register 1 = transmt status/results

/'l Register 2 = 1oop counter
voi d testSerial (int comrPort)
{

static int initialized = 0;
static int i = 1;

static int txcnt = 1;
static int errcnt = 0;
RETVAL r;

U NT8 szMsg[3];

U NT16 wSi ze;

char buf[70];

if (linitialized)

{
initialized = 1;
/1 first must disable parsing so get raw data on receiver
szMsg[0] = COMMCMD_RQST_PARSI NG,
szMsg[1] = 0; /*dummy for port val ue*/
szMsg[2] = 0O;
wSi ze = 3;
comrCeneri cCrd(comPort, szMsg, &wSize);
}

/'l I nvoked here on each | oop of quickstep execution
/1 Check to see if transmitter is ready

szMsg[0] = COMMCMD_RQST_QUERY;

szMsg[1] 0; /*dummy for port val ue*/

wSi ze = 2;

comrCeneri cCmd(comPort, szMsg, &wSize);

if (szMsg[0] == COMVOMD_RSPN_OK)

/1 Serial port ready

sprintf(buf,"Control Technol ogy Serial Port Test #%l, errors -
%l.\r\n",txcnt,errcnt);

r = commBendMsg(commPort, buf,strlen(buf));

if (r !'= SUCCESS)

{
/1 error occured, r = 35 ERROR_NO COW PORT
errcnt ++;
Control Technology Corporation 50

Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ‘C’ User Programming Guide

regWite(1, r);

}
el se
{
txcnt ++;
regWite(1, 0);
} }
else if (szMsg[0] == COMMCMD_RSPN_BUSY)
{
/1 port is busy
regWite(1, 999);
}
el se
{

/1 unknown response
regWite(1,888);

/1 set loop counter, using register 18
regWite(2, i++);
}

/******************* BELQ’VFm NETVmK ODERAT'O\‘ **********************/

USERCONNECTI ON user; // Structure to define network connections
/1 must not be stack variable and nust be passed
/1 to Open, Send, and Cl ose routines

/1 Maxi mum nunber of packets that can be queued
#defi ne MAX_USER_PACKETS_QUEUED 5
#defi ne MAX_USER MESSAGE_SI ZE 400 // set this to |argest nessage size
/'l Packet structure for queue
typedef struct
{
unsi gned char packet [MAX_USER_MESSAGE S| ZE+1] ;
int length;
unsi gned | ong host | p;
int hostPort;
} NETWORKPACKET;

/1 When counts -1 there are no packets to process, when sane full
int incount; /] storage count

int outcount; // retrieval count

NETWORKPACKET packet s[MAX_USER PACKETS QUEUED] ;

TX_MJUTEX packetMutex; // Need to nmutex joint resources with main Quickstep thread

/1 Network Function test programto create a thread to nonitor UDP port 7000
/'l al so sends a sanpl e nessage upon connection

voi d test Network()

{

static int state = 0;

voi d networ kSt at eChange(void *ptr);

if (state == 0)
{
/1 first time called therefore open a UDP port, 7000
/1 clear everything out
menset ((void *)&user, 0, si zeof (USERCONNECTI ON)) ;
user.srcPort = 7000;
user.type = NETWORK_TYPE_UDP;
incount = outcount = -1; /] set to enpty
/1 define the function to be invoked by network thread when change of state
/1 Note that nutexes nmust be used within this function if common resources
accessed
user. St at eCal | back = networ kSt at eChange;
printf("attenpt open.\r\n");
/1l Create a nutex since this thread and network cal | back are different threads
_txe_nut ex_creat e(&acket Mut ex, "USER C UDP", TX_| NHERI T) ;
if (commNet wor kOpen((USERCONNECTI ON *) &user))

/'l error occurred, cleanup

Control Technology Corporation 51
Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ¢C’ User Programming Guide

printf("Network Open failed\r\n");
_txe_nut ex_del et e(&packet Mut ex) ;
return;

printf("open occurred.\r\n");
/'l Network thread spawned so now await cal |l back with change of state
/'l saying connected. Can also watch our Control Bl ock.

st at e++;
else if (state == 1)
{
/1 await Network thread to be operational
if (user.state == USER_CONNECTED)
{
printf("got connection.\r\n");
/1 we are now ready to run
st at e++;
}
else if (user.state == USER_DI SCONNECTED)
{
/'l connection failed, abort, already closed
state--;
b
else if (user.state == USER_CONNECTI NG
{
/1 thread still starting up
}
el se
{
/1 undefi ned?????????
}
else if (state == 2)
{

/Il lets idle since running, wait for Network data to process
if (outcount == -1)

/1 nothing to do
return;
}
/1 make sure it is null termninated
packet s[out count] . packet [packet s[out count] .l ength] = 0x00;
/'l get next buffer to use, do sonething
printf("%\r\n", packets[outcount].packet); // this sent to UDPterm|ast heard
fromon port 1202

/'l Test sending a response to the packet

user. packet Buf = "UDP Packet reception Successful";
user.length = strlen(user. packet Buf);

/1 set response destination to originator of packet
user.dest| p = packets[outcount]. hostlp;
user.destPort = packets[outcount]. hostPort;

commNet wor kSend((USERCONNECTI ON *) &user) ;

/'l must set nutex when bunp counter but not needed to process data
_txe_nutex_get ((TX_MJTEX *) &acket Mut ex, TX_WAI T_FOREVER) ;
out count ++;

if (outcount == MAX_USER PACKETS_ QUEUED)
{

out count = O;
if (outcount == incount)

/'l we are enpty now
outcount = incount = -1,

/'l unl ock resource
_txe_nut ex_put ((TX_MJTEX *) &acket Mut ex) ;

Control Technology Corporation 52
Document 951-520004-0002 10/04 (Preliminary)

5100/5200 ¢C’ User Programming Guide

/1 Call back function to process RX thread state change
voi d networ kSt at eChange(void *ptr)

{

/1 1t is left to the user to nodify the bel ow code for their application
USERCONNECTI ON *user = (USERCONNECTI ON *)ptr;

swi tch(user->state)
{
case USER_CONNECTED:
/1 OK to send now
printf("Got USER _CONNECTED\r\n");
br eak;

case USER_DI SCONNECTED:
/1 this connection is has been broken
printf("Got USER DI SCONNECTED\r\n");
br eak;

case USER DATA_AVAI LABLE:
/1 offload data packet, do not access serial ports except on may
Qui ckstep | oop
/1 the routines is not thread safe
printf("Got USER DATA AVAI LABLE, |ength %\ r\n", user->length);
/1 nove data to buffers
_txe_nut ex_get ((TX_MJTEX *) &packet Mut ex, TX WAI T_FOREVER) ;
if (incount == -1)

/1 this is the first packet
outcount = O;
incount = O;

else if (incount == outcount)

{
_txe_mut ex_put ((TX_MJTEX *) &acket Miut ex) ;
return; /'l ignore packet, buffers full

/'l Move the packet data into our |ocal queues for processing
mencpy(packet s[i ncount] . packet, user - >packet Buf, user->| ength);
packet s[incount].length = user->length;

packet s[incount]. hostlp = user->destlp;

packet s[incount]. hostPort = user->destPort;

i ncount ++;

if (incount == MAX_USER _PACKETS QUEUED)

/1l wap it

incount = 0;
}
_txe_nut ex_put ((TX_MJTEX *) &acket Mut ex) ;
br eak;

defaul t:
printf("Got undefined state\r\n");
return;

}

/1 Function called when programis being unl oaded, possibly new being | oaded
voi d user C eanUp()
{
/1 must return any allocated nmenory to systemor close network connections if open so threads
stop
if (user.state == USER_CONNECTED)

{
commNet wor kCl ose((USERCONNECTI ON *) &user) ;
}
_txe_nut ex_del et e((TX_MJTEX *) &acket Mut ex) ;
}
Control Technology Corporation 53

Document 951-520004-0002 10/04 (Preliminary)

