
QuickBuilder String Handling Example

TechNote

18

 Control Technology Corporation, Hopkinton, MA • 800.282.5008 • www.ctc-control.com

Page 1 www.ctc-control.com Control Technology Corporation

This document shows you an example program that sends and receives a string
over an Ethernet Raw Socket connection. This program can be easily modified
for serial communications with a simple port set-up change. Simply omit the
22000 Raw Socket Commands (i.e. $REGISTERS[22000] = 7; through
$REGISTERS[22007] = 1;) and set $REGISTERS[12000] to the desired comm. port.

For more specific information on general communications and using the
message.ini file, refer to the 5300 Enhancements Overview Manual:
http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530001.pdf

For more information on specific communication register settings, refer to the
5300 Quick Reference Register Guide:
http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530006.pdf

This program example uses one input to trigger the transmission of an ASCII
string and then waits for a response. The string being sent is stored in a file
called message.ini and copied to the Messages directory within the _system
directory of the controller. This message.ini file can be created using notepad.
Each line in the message.ini file represents a different string that you would like
to send. Make sure that the last character of this file is a carriage return.

This program does the following:

1) Set-up the Ethernet port settings and initialized the connection.
2) Clears the buffer and waits for input 1.
3) Sends the 1st line of the message.ini file in ASCII format over Ethernet

Raw Socket.
4) Gets the response back from the device that the message was sent to.

The system components (Resources) used in the program are shown below
NOTE: Both ReadString and response variables will need to be set as a string
types:

http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530001.pdf�
http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530006.pdf�

Page 2 www.ctc-control.com Control Technology Corporation

Page 3 www.ctc-control.com Control Technology Corporation

The overall program structure (SFC) is set-up as shown below:

The initial Start Task sets up the Ethernet parameters as described in the
code below.

Page 4 www.ctc-control.com Control Technology Corporation

The buffer is then cleared in the next step ClearBuffer as shown below:

Wait for Input 1 to be on.

Page 5 www.ctc-control.com Control Technology Corporation

The 1st line of the message.ini is now sent out the Ethernet port as described
in the SendString step code below:

After we see the response from our device is complete we can retrieve the
data as described in the GetString step code on the next page:

Page 6 www.ctc-control.com Control Technology Corporation

Note: If you wanted to omit the first character received and just read the next
20 characters after that you could use the statement
ReadString=string("%cr12002,19");, which would get the 2nd
through 20th characters of the received string and assign those characters to
ReadString.

We now wait for Input1 to turn off before we go back to the ClearBuffer step
to repeat the whole process.

Page 7 www.ctc-control.com Control Technology Corporation

APPENDIX – MSB CODE

This appendix has the code shown in the steps above but will
allow you to cut and past into your documents for your
convenience.

StartTask: Main Code:

$REGISTERS[22000] = 7; // set up this Ethernet Port as virtual
com port 7
$REGISTERS[22001] = 0; // set up the 5300 as the client,
initiating connection
$REGISTERS[22002] = 192; // most significant octet of IP address
192.168.254.10
$REGISTERS[22003] = 168; //
$REGISTERS[22004] = 254; //
$REGISTERS[22005] = 10; // least significant octet of IP address
192.168.254.3
$REGISTERS[22006] = 3200; // TCP port to attempt connection to 3200
$REGISTERS[22007] = 1; // attempt to connect to Ethernet port
3200

store 7 to $REGISTERS[12000]; // set current port the Ethernet port
3200
store 0 to $REGISTERS[12303]; //Inhibit Port Parsing. This means that
the buffer
 // will not parse the characters until a
0 is //stored to register 12302

Step: ClearBuffer Code:

store 7 to PortNumber; //set current port to
Ethernet port 3200
store PortNumber to $REGISTERS[12000]; //selects port number
store 0 to $REGISTERS[12302]; //clear the buffer on
Ethernet port 3200

Step: SendString Code:

$REGISTERS[12316] = 1; // Select message to send from
message.ini file
 // in this case we are sending the
1st line.
 //If we wanted to send the 2nd line
we would
 //have used the code
$REGISTER[12316] = 2;
repeat {} until $REGISTERS[12302]==255; //wait for the information
from the
 // device since automatic parsing
was disable // the character count

Page 8 www.ctc-control.com Control Technology Corporation

(register 12302 will // be equal to
255 once a carriage return
 //is seen

Step: GetString Code:

ReadString=string("%cr12001,200"); //get the first 200 characters from
the buffer

response = ReadString; //make response = ReadString and
you can now
 // extract data from response as
needed using
 //string functions such as left,
right and //mid.

delay 250ms;

